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a b s t r a c t

The model of volumetric crystallization of the undercooled melt is presented. This model consists in
proper consideration of heat release, caused by phase transition, by means of substitution of real distri-
bution of the temperature field, formed in the melt around the growing sites of a new phase, into the
kinetic equations describing the process. Numerical solution to the problem was derived at the example
of metal melt crystallization. The current model is compared with the isothermal model and the model,
based on consideration of heat release in balance relationships.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In general, phase transitions occur by means of nucleation and
growth of the new phase sites. Hence, total kinetics of this process
is determined by nucleation frequency and the rate of nucleus
growth. The values of these characteristics relate to the complex
of thermodynamic and kinetic parameters, available under the
given conditions, and a degree of medium metastability. The
important task is determination of dependence between the part
of transformed volume, time, number of the formed sites of a
new phase, duration of transformations, etc. The problems of this
type were solved repeatedly with regard to crystallization of the
undercooled melts [1,2]. However, it should be noted that latent
heat of phase transition was not considered in these works because
of assumption of the isothermal character of the process or it was
considered integrally, using the balance relationships and assum-
ing melt undercooling, uniform over the whole volume at any time
moment. This model is true only for times, when the length of a
heat wave around nuclei exceeds their sizes significantly, and melt
undercooling near crystallization fronts is almost equal to its initial
undercooling (the stage of non-equilibrium crystallization). With
the nucleus growth, heat near their surfaces is accumulated grad-
ually, the melt temperature approaches the equilibrium tempera-
ture of phase transition, and a quasistationary temperature
boundary layer is formed around the nuclei (the stage of equilib-
rium crystallization). Because of a strong dependence of nucleation
frequency on undercooling, the probability of nucleation of new
crystallization sites near the growing crystals decreases drastically,
and this will significantly effect kinetics of volumetric transforma-
tion. This requires some additions to the existing models of phase
transitions. The current work deals with the description of total
ll rights reserved.
volumetric crystallization with consideration of the abovemen-
tioned factors.

2. Problem statement

Let us consider the melt volume, which is cooled fast at the ini-
tial moment to some temperature T0 < Tmel, where Tmel is the equi-
librium crystallization temperature. At this the cooling rate
q = �dT/dt is so high that at this stage there are no any nuclei of
the crystalline phase, formed within the melt volume. This can
be expressed by the condition [3] V

R T0
Tmel
ðJ=qÞdT < 1, where V0 is

the initial volume of melt; J is nucleation frequency. This situation
may occur, for instance, at high-speed collision of metal melt drop-
lets with a cold heat-conducting substrate [4]. When the melt is
cooled to a given temperature, its crystallization starts. This pro-
cess is assumed adiabatic.

The main goal of this work is determination of dependence be-
tween the part of a crystalline mass and time X(t) = V(t)/V0 where
V(t) is the volume of a crystallized matter; number of generated
crystallization sites N(t); duration of transformation. The final num-
ber of crystallites and their size distribution function will probably
determine the microstructure of solidified material. Let us think
that the density of matter in both phases is the same. In particular,
we will neglect matter shrinkage during solidification process.

Before problem statement let us consider the mechanisms of
crystal nucleation and growth in the undercooled melt and briefly
consider the models of volumetric crystallization currently avail-
able in the literature.

2.1. Mechanism of crystal growth

To describe the growth of a crystal ensemble, this work uses the
following ‘‘cellular” model. The whole volume of melt is divided
into areas: spherical cells, where one crystal grows in the center
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Nomenclature

a thermal diffusivity
a* dimensionless coefficient
c heat capacity
dm diameter of molecule
f size distribution of nuclei
G Gibbs number
h Plank constant
J nucleation frequency
J0 nucleation frequency at initial undercooling
K kinetic coefficient
Ku Kutateladze number
k dimensionless coefficient
kB Boltzmann constant
L specific melting heat
N number of crystals per a volume unit
Nm number of molecules per a unit of melt volume
Np number of impurity particles per a volume unit
Nmax number of nuclei, formed during the process per a vol-

ume unit
n* number of molecules per a critical nucleus
ni number of molecules on the surface of the ith impurity

particle
q cooling rate
R crystal radius
R* radius of critical nucleus
r radial coordinate
rc cell size
rT thickness of temperature boundary layer around a crys-

tal
rcr average size of solidified material grain

r0 typical size
T temperature
Tmel melting temperature
T0 initial temperature of melt
DT melt undercooling, Tmel � T
DT0 initial undercooling of melt
t time
te lag time
t* typical time of nucleation expectation
tcr time of crystallization
t0 typical time
U activation energy
V crystal volume
VT volume of ‘‘stagnation area” around crystal
V0 initial volume of melt
v0 typical rate of crystal growth
W* work of critical nucleation in homogeneous process
X part of crystalline mass
XT total volume of ‘‘stagnation area”
Xmax final part of crystalline mass

Greek symbols
k heat conductivity
q density
r surface tension at melt-crystal interface
ui equilibrium wetting angle of the ith impurity particle

surface
w function of u
v proportionality coefficient
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of every cell. There is no heat flux at the cell boundary because of
symmetry. The process of crystal growth in this statement is de-
scribed by the following boundary problem [1].

Let a spherical crystal grows in the melt with temperature
T0 < Tmel. Temperature field T(r, t) around a crystal is described by
the equation of heat conductivity, illustrating spherical symmetry
of the problem

@T
@t
¼ a

r2

@

@r
r2 @T
@r

� �
; ð1Þ

where a = k/(qc) is thermal diffusivity of the melt; q, k, c are density,
heat conductivity, and heat capacity, respectively.At the initial
moment

Tðr;0Þ ¼ T0: ð2Þ

The boundary conditions on the crystal surface are as follows:

– the heat balance condition
qL
dR
dt
¼ �k

@T
@r

� �
r¼R

; ð3Þ

– the equation, describing kinetics of phase transition (the
mechanism of crystal growth is considered normal, i.e., the
rate of its growth is assumed proportional to melt underco-
oling at the front of crystallization) [5,6]
dR
dt
¼ KðDTÞr¼R; ð4Þ

where R is the crystal radius; L is specific heat of crystallization;
DT = Tmel � T is melt undercooling; K ¼ ðd4

mqLÞ=ðhTmelÞ expð�U=
ðkBTmelÞÞ is kinetic coefficient characterizing frequency of molecule
bonding from the melt to the crystal; kB is Boltzmann constant; h
is Plank constant; dm is diameter of matter molecule; U is activation
energy.

The condition at the cell boundary

@T
@r

� �
r¼rc

¼ 0; ð5Þ

where rc is the cell radius, which will be determined below.
Let us turn to the following dimensionless variables (hereinafter

the dimensionless variables will be written with a superscript
stroke): T ¼ T=Tmel; �r ¼ r=r0; �t ¼ t=t0;where r0 = a/(K Tmel); t0 = a/
(K Tmel)2. Then the boundary problem (1)–(5) will be written as

@T
@t
¼ 1

�r2

@

@�r
�r2 @T
@�r

 !
; ð6Þ

Tð�r; 0Þ ¼ T0; ð7Þ

dR
d�t
¼ �Ku�1 @T

@�r

 !
�r¼R

;
dR
d�t
¼ ðDTÞ�r¼R; ð8Þ

@T
@�r

 !
�r¼�rc

¼ 0; ð9Þ

where Ku = L/(c Tmel) is Kutateladze number.
If the crystal size is considerably less than cell size R/rc << 1,

boundary condition (9) can be substituted by the condition of
infinity, consisting in equality of the initial melt temperature at a
large distance from the crystal

Tðr !1; tÞ ¼ T0: ð10Þ

As it is shown below the process of nucleation occurs only at the
initial stage of crystallization, therefore application of boundary
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condition (10) for its description can be quite reasonable. For later
time intervals condition (9) should be used.

Using the common theory of solution to heat conductivity equa-
tions within domains with moving boundaries, we can find the
solution, which meets equation (6) and conditions (7), (8), and
(10) [7]

Tð�r;�tÞ ¼T0 þ
Ku

2
ffiffiffiffiffiffi
p�r
p

Z �t

0

Rð�sÞ dR
d�sffiffiffiffiffiffiffiffiffiffiffi

�t � �s
p exp � ½

�r � Rð�sÞ�2

4ð�t � �sÞ

 !(

� exp � ½
�r þ Rð�sÞ�2

4ð�t � �sÞ

 !)
d�s;

dR
d�t
¼ 1� TðR;�tÞ:

The solution to boundary problem (7), (8), and (10) becomes
easier, if there is the crystallization state, when the temperature
changes are so slow that we can assume dT/dt � 0. This approxima-
tion is quite reasonable for low rates of crystal growth. In this case
the solution takes the following form [1]

Tð�r;�tÞ ¼ T0 þ
DT0Ku�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2KuDT0�t

p
� 1

� �2

�r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2KuDT0�t

p ; ð11Þ

Rð�tÞ ¼ Ku�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2KuDT0�t

q
� 1

� �
: ð12Þ

It follows from Eqs. (11) and (12) that for t << ð2KuDT0Þ�1 the pro-
cess of crystallization occurs as the isothermal one, and the rate of
crystal growth is determined by kinetics of phase transition:
Rð�tÞ � DT0t (the same relationship can be also obtained for the iso-
thermal model of crystal growth, turning value Ku to zero in Eq.
(12)). For higher time ranges (t � ð2KuDT0Þ�1Þ heat is accumulated
near the crystal surface, and finally the melt temperature near its
surface becomes equal to the equilibrium temperature of phase
transition. In this case heat removal becomes predominant in the
process of crystallization: Rð�tÞ �

ffiffiffiffiffiffiffi
�a��t
p

, where �a� ¼ 2Ku�1DT0; and
quasistationary temperature boundary layer DTð�rÞ � DT0ð1� R=�rÞ
is formed around a crystal. Namely for these time ranges the model
of volumetric crystallization, based on consideration of heat release
in balance relationships, is inappropriate because in this case the
temperature field in the melt is significantly nonuniform.

2.2. Nucleation rate

Let us define nucleation frequency J by the classic kinetic theory
of Frenkel–Zeldovich [8,9]

J ¼ NmJ� expð�W�=kBTÞ þ
XNp

i¼1

niJ
� expð�W�wðuiÞ=kBTÞ; ð13Þ

The first term in the right part of Eq. (13) characterizes frequency of
homogeneous nucleation (in a pure melt), and the second term
characterizes frequency of heterogeneous nucleation (on impurity
particles and foreign debris). Here, W� ¼ 16pr3T2

mel=ð3q2L2DT2Þ is
the work of critical nucleation in a homogeneous process (the ra-
dius of a critical nucleus at homogeneous nucleation is determined
by expression R� ¼ 2rTmel=ðqLDTÞ; the model of heterogeneous
nucleation uses the same value of the curvature radius of a domed
nucleus surface as the model of homogeneous process); r is the sur-
face tension at the melt–crystal interface; J� ¼ ð2dm=hÞ
ðrkBTÞ1=2 expð�U=ðkBTÞÞ; Nm is the number of molecules per a unit
of melt volume; ni is the number of molecules on the surface of
the ith impurity particle (foreign surface), which can be the nucle-
ation sites; Np is the number of impurity particles per a unit of melt
volume; wðuiÞ ¼ ð1=4Þð1� cosuiÞ

2ð2þ cosuiÞ, ui is the equilibrium
wetting angle for the surface of the ith impurity particle.

It should be noted that in the current work we have used the
dependence for stationary nucleation frequency because according
to the estimates of [9] typical lag time (time of state stabilization)
te � n4=3

� ðh=ðkBTÞÞ expðU=kBTÞ, where n* is the number of molecules
per a critical nucleus, is essential only for the high-viscous melts
(at viscosities close to the values of the amorphous state of matter),
not considered in the current work.

According to analysis of relationship (13), at small undercooling
nucleation occurs predominantly at the heterogeneous sites, and
the lower the wetting angle of impurity particle surfaces, the high-
er the rate of nucleation. With a rise of undercooling the role of
homogeneous nucleation increases and finally it becomes predom-
inant. It is easy to determine the value of critical undercooling DT�,
corresponding to transition from the mechanism of heterogeneous
nucleation to the mechanism of homogeneous nucleation:
DT� ¼ Tmelð Gð1�wÞ

lnðNm=NpnÞ Þ
1=2, where G ¼ 16pr3=ð3q2L2kBTÞ is the Gibbs

number. When deriving the latter relationship, it was assumed
for simplicity that in the melt there were impurity particles only
of one kind.

Generally speaking, a priori description of heterogeneous nucle-
ation is significantly complicated by the fact that dependence for
nucleation frequency includes some values of complex determina-
tion. Therefore, we will confine ourselves to the description of
homogeneous crystallization.

In dimensionless variables frequency of homogeneous nucle-
ation J ¼ J=J0 takes the form

J ¼ exp G DT�2
0 � DT�2

� �� �
;

Here, J0 = J(DT0) is typical nucleation frequency (in our case this is
frequency of homogeneous nucleation at initial undercooling).

2.3. Isothermal model of spontaneous crystallization

This model does not consider the release of the latent heat of
phase transition during the crystalline mass growth. This means
that melt undercooling during crystallization is constant and,
hence, nucleation frequency and crystal growth rate also stay
constant.

One of the first works, where the solution to the given problem
was suggested, is the work of Kolmogorov [10]. It is shown there
that dependence of crystalline mass X on time is determined by
relationship

XðtÞ ¼ 1� exp �
Z t

0
JðsÞVðt � sÞds

� �
¼ 1� expð�ðp=3ÞJ0m3

0t4Þ;

ð14Þ

where V is the volume of crystal, nucleated at time moment s;
J0 = J(DT0) is nucleation frequency; v0 = KDT0 is the rate of crystal
growth. The densities of liquid and solid phases are assumed to
be equal in this model. The mechanism of growing site ‘‘collision”
is not considered there.

It follows from (14) that the part of the crystalline mass ap-
proaches one asymptotically (i.e., time of phase transition tends
to infinity), and this does not corresponds to physics of the process
because it is obvious that for the final rate of crystal growth and
final nucleation frequency time of phase transition will be finite
if even a single nucleus is generated in a volume. It is always
possible that there will be no even one nucleus, but for an isolated
system with finite volume V0 this ‘‘possibility” tends to zero ‘‘cat-
astrophically” at t � t� ¼ 1=ðJVÞ (t* is typical time of nucleation
expectation).

In this connection, when developing the non-isothermal model
of volumetric crystallization, we will use the results taken from
[11], where the isothermal model is developed on the basis of ideas
different from the Kolmogorov’s theory. The main idea of this work
is as follows. Let there is a volume occupied by some metastable
phase of some matter. During the process of phase transition this
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Fig. 1. Scheme of the process: 1, crystal; 2, ‘‘stagnation” area around crystal; 3,
melt.
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volume is gradually filed with a new phase (stable in this state). At
this nucleation is possible only within the area, which is still in the
previous phase state. Hence, time dependence of the part of vol-
ume X, occupied by a new phase, is described by integral equation

XðtÞ ¼
Z t

0
JðsÞð1� XðsÞÞVðt � sÞds: ð15Þ

Number of nuclei N formed during time t in a volume unit is
determined by expression

NðtÞ ¼
Z t

0
JðsÞð1� XðsÞÞds: ð16Þ

In case of constant melt undercooling an analytical solution to
Eq. (15) can be found

XðtÞ ¼ 1� cos ð2pJ0v3
0Þ

1=4t
n o

cosh ð2pJ0v3
0Þ

1=4t
n o

: ð17Þ

It follows from relationship (17) that the time of complete crys-
tallization of the melt is finite, and dependences X(t), calculated by
formulas (17) and (14), coincide only at the initial stage of the
process.

The maximal number of nuclei formed during the whole pro-
cess Nmax � 0.8(J0/v0)3/4 can be determined from Eq. (16) with
consideration of (17). We should note that according to Kol-
mogorov’s theory, despite the time of melt crystallization tends
to infinity, the number of forming nuclei is finite and equals
Nmax � 0.9(J0/v0)3/4.

It is obvious that a miss of latent heat of phase transition in
solutions to the problems of volumetric transformation leads to
significant errors.

2.4. The model of spontaneous crystallization based on consideration
of heat release in balance relationships

According to this model, heat, released in phase transition, is
spread uniformly over the whole volume of the melt, the melt tem-
perature increases gradually during the process, and the tempera-
ture field stays uniform in the whole melt volume at any moment
of time. Time dependence of a part of the crystalline mass and the
number of generated nuclei are also described by Eqs. (15) and
(16). However, in contrast to the isothermal model, nucleation fre-
quency and the rate of crystal growth depend on time because melt
undercooling reduces gradually. At this melt undercooling is deter-
mined from the equation of energy balance

DT ¼ DT0 � KuX:
2.5. Kinetics of volumetric phase change

Let us try to solve the stated problem from the point of model
concept different from the above mentioned. As it was already
noted, a temperature boundary layer is formed around the growing
crystals due to release of the latent heat of phase transition. At this,
probability of nucleation of the new crystallization sites near the
existing ones will be considerably lower than that far from the
existing sites because of the strong dependence of nucleation fre-
quency on undercooling. We can accept that some ‘‘stagnation”
area is formed around the crystals, and new crystallization sites
are not formed there. It is shown schematically in Fig. 1. To take
this fact into the account, let us substitute real dependence of
nucleation frequency around crystals J(r) by the stepped one, con-
sidering that within the ‘‘stagnation” area nucleation does not oc-
cur, whereas beyond this area nucleation frequency equals
frequency at initial undercooling. We will determine the size of a
‘‘step” (thickness of temperature boundary layer rT) from the con-
dition that typical times of nucleation expectation in a cell at
stepped and real dependences J(r) should be equal, and this consid-
ers the above substitution correctly:

�rT ¼ �r3
c � 3

Z �rc

R
Jð�rÞ�r2d�r

� �1=3

:

Let us take cell size rc proportional to the size of crystals: rc = vR.
This condition is quite grounded because the thickness of temper-
ature boundary layers, formed around the crystals, is proportional
to the size of crystals (11) and (12). Proportionality coefficient v is
determined from the condition that cells occupy the whole volume

Nð4p=3Þv3
Z R

0
R3f ðRÞdR ¼ 1;

where f ðRÞ ¼ N�1ðdN=dRÞ is the function of size distribution of
nuclei. Here, N is the number of crystallites per a volume unit,
generated by time moment t. We should note that both distribu-
tion function f(R) and coefficient v depend on time.Considering
the abovementioned, the total volume of ‘‘stagnation” area XT in
a unit of matter volume vs. the number of all crystallites gener-
ated by time moment t is determined by the following integral
equation

XTð�tÞ ¼ k
Z �t

0
Jð1� XTð�sÞÞVTð�t � �sÞd�s; ð18Þ

where VT ¼ ð4p=3Þ�r3
T is the volume of ‘‘stagnation” area around the

crystal, nucleated at time moment �s; k ¼ J0r3
0t0 is a dimensionless

coefficient. Eq. (18) is modification of the equation for time depen-
dence of the crystalline mass part, obtained in the framework of the
isothermal model in [11]. There is an analogy between the volume
occupied by the crystalline phase, where nucleation of new sites is
excepted (in the isothermal model), and the volume of ‘‘stagnation”
area of the given non-isothermal model. We should note that in Eq.
(18) J does not depend on time because it is dimensionless nucle-
ation frequency at initial undercooling (for only homogeneous
nucleation J ¼ 1).

Time dependence of the part of the crystallized volume will be
described by relationship
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3294 A.A. Chernov / International Journal of Heat and Mass Transfer 52 (2009) 3290–3296
Xð�tÞ ¼ k
Z �t

0
Jð1� XTð�sÞÞVð�t � �sÞd�s;

where V ¼ ð4p=3ÞR3 is the volume of crystal, nucleated at time mo-
ment �s. We should note that function Xð�tÞ tend asymptotically to
Xmax ¼ Ku�1DT0, determined from the condition that melt crystalli-
zation stops, when heat of phase transition eliminates its underco-
oling. The melt crystallizes completely, when DT0 > Ku.

Number of nuclei N formed during time �t in a volume unit is
determined by expression

Nð�tÞ ¼ ðk=r3
0Þ
Z �t

0
Jð1� XTð�sÞÞd�s:

We should note that the nucleation rate of new crystallization site
dN/dt is important only at the initial stage of the process. This is
caused by the fact that formation even of a small part of the crystal-
line mass is enough to eliminate melt undercooling and reduce
nucleation frequency by several orders in comparison with the ini-
tial one. In terms of the considered model this means that the thick-
ness of temperature boundary layers, formed around crystals, is
significantly larger than the size of crystals, and the total volume
of ‘‘stagnation” area XT tends to one even at small values of X. At this
the rate of new site nucleation reduces drastically. Following crys-
tallization occurs due to the growth of the existing sites.

The average size of crystallized grains is rcr = (4pNmax/3)�1/3,
where Nmax is the number of crystallites formed during the whole
process. Since nucleation occurs only at the initial stage, all grains
of crystallized matter will have almost the same size, close to their
average value, and the final function of distribution will be rela-
tively narrow.

The developed system of equations completely determines
crystallization dynamics of undercooled melt with consideration
of real distribution of the temperature field, formed in the melt vol-
ume during crystal nucleation and growth; this system also allows
determination for the crystallized matter microstructure.

3. Calculation results

Numerical calculations at the example of crystallization of the
undercooled metal melt were carried out using the considered
model. Results of calculations were compared with data obtained
by the known models, described above. It was assumed that the
melt is so pure that nucleation in the considered range of underco-
oling has the homogeneous nature. Aluminum was chosen as the
studied material. This is caused by the fact that all its thermal–
physical and kinetic properties, required for calculations, are well
studied. Besides, purely homogeneous nucleation, considered in
the paper, is most often for various technological processes related
to crystallization of pure metals and alloys. The following thermal–
physical and kinetic properties of the matter were used in calcula-
tion: Tmel = 933 K; q = 2700 kg/m3; k = 209 W/(m K); c = 880 J/
(kg K); L = 361 kJ/kg; r = 0.093 N/m; dm = 2.6�10�10 m; U = 4.15
� 10�20 J/mol. Let us introduce the scale values and similarity cri-
teria: typical size r0 � 3.3 � 10�7 m; typical time of stabilization of
equilibrium crystal growth t0 � 1.2 � 10�9 s; Kutateladze number
Ku = 0.44; Gibbs number G = 1.1. The low boundary of the range
of considered undercooling meets the situation, when frequency
of homogeneous nucleation becomes essential, and the upper
boundary corresponds to typical undercooling of aluminum melt,
which can be obtained by the known methods of quenching, when
no sites are nucleated in the melt at cooling [4]. For clear under-
standing of the considered phenomenon results of calculations
are presented then in dimensional variables.

Time dependence of the number of crystallization sites nucle-
ated during the process is shown in Fig. 2a. Initial undercooling
of the melt was assumed 130 K. According to the figure, at initial
times dependence N(t) is close to the linear one. This means that
crystals, nucleated at this stage, do not effect the rate of nucle-
ation of the new ones. With a growth of the crystalline mass
total volume of ‘‘stagnation” area XT increases, nucleation rate
of new crystallization sites dN/dt decreases and, finally, vanishes.
At this the part of the crystalline mass is still low and makes up
several percents, and, as it was mentioned above, this is
explained by the fact that the size of ‘‘stagnation” area around
crystals exceeds significantly the sizes of the crystals. Therefore,
nucleation occurs only at the initial stage of the process.
Dependence N(t) calculated by the model on the basis of heat re-
lease consideration in balance relationships is shown in Fig. 2b.
In this case, the nucleation rate of crystallization sites dN/dt de-
creases because of reduction of melt undercooling. Fast transi-
tion from the final rate to zero at relatively short times is
caused mainly by the strong dependence of nucleation frequency
on undercooling (13).
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Time dependence of the part of the crystalline mass is illus-
trated in Fig. 3. Initial undercooling of melt was assumed equal
to 130 K. According to the figure, curves X(t), calculated by both
non-isothermal models, tend asymptotically to 0.32, correspond-
ing to Xmax for given undercooling, whereas the isothermal model
provides complete crystallization of the melt.

We should note that the characters of dependences N(t) ob-
tained by two different non-isothermal models differ, whereas
dependences X(t) almost coincide with the only difference that
they have different time scale. This is caused by the fact that model
difference is mainly shown at the initial stage of the process, when
new crystallization sites are nucleated. At the later stage, when the
process of volumetric transformation is determined by the growth
of the existing sites, the models almost coincide because they use
the same mechanism of crystal growth. Differences in time of crys-
tallization are caused by the fact that the number of sites nucleated
at the initial time moment is different for different models.
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Fig. 3. Part of the crystalline mass vs. time: (a) calculation by the model presented;
(b) calculation by the integral model.
Diagrams of dependence between the number of nucleated sites
Nmax, typical time of crystallization tcr, and initial undercooling of
melt, plotted by the isothermal and non-isothermal models, are
shown in Figs. 4 and 5. Typical time of crystallization was deter-
mined as time, when the part of the crystalline mass becomes
equal to 0.9Xmax. Perhaps, the growth in the number of crystalliza-
tion sites and reduction of typical time of the process with an in-
crease in initial undercooling of the melt relates to a significant
increase in nucleation frequency and rate of crystal growth.

At first sight it may seem that dependences for isothermal and
presented non-isothermal models do not differ considerably. How-
ever, several factors should be taken into account here. First, nucle-
ation rates differ significantly in the non-isothermal and
isothermal models. Thus, in the isothermal model it is significantly
higher (12). Second, in the non-isothermal model the area with
possible nucleation of new crystallization sites, is significantly
smaller (what is connected with the forming boundary tempera-
ture layers around the crystals). Third, in the non-isothermal mod-
el time of crystallization is considerably longer than typical time of
new site nucleation, whereas, in the isothermal model nucleation
occurs during the whole process. However, the time of the whole
process in the isothermal model is considerably shorter than that
in the non-isothermal model, and this levels the differences in
the number of nucleated sites. And, finally, in the isothermal model
the whole melt should be crystallized in any case, but there is some
limitation related to initial undercooling of the melt in the non-iso-
thermal model.

The principle difference of the non-isothermal model of volu-
metric crystallization based on consideration of heat release in bal-
ance relationships from the model presented in the current paper
is as follows. In the first model nucleation of new sites stops be-
cause of reduction in melt undercooling over the whole volume,
what decreases nucleation frequency, and finally vanishes, but in
the current model the area, where new crystallite nucleation is
possible, becomes smaller (and finally also vanishes). However,
in both models nucleation occurs only at the initial stage of the
process (at this, typical duration of this stage is considerably short-
er then typical time of the whole process), and following melt crys-
tallization is going on due to the growth of existing sites.
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Fig. 4. Number of nucleated crystallization sites vs. initial undercooling of melt:
solid line, calculation by the model presented; dashed line, calculation by the
integral model; dotted line, calculation by the isothermal model.
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3296 A.A. Chernov / International Journal of Heat and Mass Transfer 52 (2009) 3290–3296
Considering this fact, the calculation scheme for the whole process
can be significantly simplified. When determining of the number of
crystallization sites Nmax, nucleated at the initial stage, by the mod-
el presented, dependence of crystalline mass part on time can be
calculated from the following relationship X(t) = Nmax (4p/3) R3(t).
We should note once more that the mechanism of growing site
‘‘collision” is not considered by the current model. Dependence
R(t) can be obtained from the boundary problem (1)–(5), where
the size of a cell around crystal is determined from relationship
rc = [(4p/3) Nmax]�1/3.

It is also can be seen in Figs. 4 and 5 that difference in depen-
dences of nucleated site number on crystallization time for the
non-isothermal models decreases with a rise of initial undercool-
ing. This relates to the fact that at significant undercooling the
mechanism of crystal growth approaches the non-equilibrium
one. However, in the studied range of undercooling typical dimen-
sionless times, when nucleation occurs, are considerably longer
than one. This means that the conditions of nuclei growth differ
from the isothermal conditions, and application of the model of
volumetric crystallization based on consideration of heat release
in balance relationships (and all the more the isothermal model)
is not proper.
In conclusion, we should note that direct comparison of calcula-
tion results with experimental data is rather complex because in
experiment it is difficult to achieve fast required uniform underco-
oling over the whole volume of the melt. Therefore, to verify the
results obtained the corresponding model problem should be
solved, e.g., the conjugated problem on crystallization of a metal
melt microlayer on a massive substrate.

4. Conclusions

The model of spontaneous crystallization of melt, turned fast
into the undercooled state, with consideration of heat release at
the growth of new phase sites was developed. Available models
of volumetric transformations were analyzed, and their differences
from the model presented are shown. It is noted that missing of
heat release or its consideration in balance relationships can lead
to significant errors. Numerical solution to the problem was ob-
tained at the example of metal melt crystallization. Typical times
of the process, number of nucleated crystallization sites and
dependence of the crystalline mass part on time were determined.
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